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ABSTRACT
Knowledge tracing (KT) aims to model students’ knowledge level
based on their historical performance, which plays an important
role in computer-assisted education and adaptive learning. Recent
studies try to take temporal effects of past interactions into consid-
eration, such as the forgetting behavior. However, existing work
mainly relies on time-related features or a global decay function to
model the time-sensitive effects. Fine-grained temporal dynamics of
different cross-skill impacts have not been well studied (named as
temporal cross-effects). For example, cross-effects on some difficult
skills may drop quickly, and the effects caused by distinct previous
interactions may also have different temporal evolutions, which
cannot be captured in a global way.

In this work, we investigate fine-grained temporal cross-effects
between different skills in KT. We first validate the existence of tem-
poral cross-effects in real-world datasets through empirical studies.
Then, a novel model, HawkesKT, is proposed to explicitly model the
temporal cross-effects inspired by the point process, where each
previous interaction will have different time-sensitive impacts on
the mastery of the target skill. HawkesKT adopts two components
to model temporal cross-effects: 1) mutual excitation represents
the degree of cross-effects and 2) kernel function controls the
adaptive temporal evolution. To the best of our knowledge, we
are the first to introduce Hawkes process to model temporal cross-
effects in KT. Extensive experiments on three benchmark datasets
show that HawkesKT is superior to state-of-the-art KT methods.
Remarkably, our method also exhibits excellent interpretability and
shows significant advantages in training efficiency, which makes it
more applicable in real-world large-scale educational settings.

CCS CONCEPTS
• Social and professional topics → Student assessment; • Ap-
plied computing→ Learning management systems.
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Figure 1: Illustration of how the mastery degree of the tar-
get skill (▽) is influenced by temporal cross-effects. The base
knowledge level of the target skill is denoted as 𝜆x𝑖0 , and each
past interaction will have adaptive impact (𝛼x𝑗 ,x𝑖 ) on target
skill’s mastery degree. Furthermore, all the effects evolve
differently with time (𝛽x𝑗 ,x𝑖 ), depending on both previous in-
teractions and the target skill.

ACM Reference Format:
Chenyang Wang, Weizhi Ma, Min Zhang, Chuancheng Lv, Fengyuan Wan,
Huijie Lin, Taoran Tang, Yiqun Liu, Shaoping Ma. 2021. Temporal Cross-
Effects in Knowledge Tracing. In Proceedings of the Fourteenth ACM Inter-
national Conference on Web Search and Data Mining (WSDM ’21), March
8–12, 2021, Virtual Event, Israel. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3437963.3441802

1 INTRODUCTION
Nowadays, computer-assisted learning (CAL) has been a vital part
of educationmethodologies. It is increasingly accessible for students
to study on all kinds of intelligent tutoring platforms. Besides, the
abundant learning logs in CAL systems enable them to provide
personalized learning trajectories by analyzing data from students’
learning history. Skills that are too difficult or have already been
mastered can be identified and only the most suitable learning
materials will be presented [31].

A key problem in learner data analysis is the assessment of
student’s knowledge state. Knowledge tracing (KT) is such a task
of predicting students’ future performance (responses to assess-
ment questions) given their past interactions in educational appli-
cations [6]. It is challenging since many factors are involved in the
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learning process, such as one’s ability to acquire knowledge, tempo-
ral dynamics, and human cognition [29]. Some traditional methods
use the Hidden Markov Model to capture how a student’s knowl-
edge evolves, among which the most popular method is Bayesian
Knowledge Tracing (BKT) [6, 15]. Another line of work centers
around item response theory (IRT), which aims to learn common
factors to generalize observations [3, 16, 27]. Recently, with the
rapid progress in deep learning, some RNN-based methods [24, 29]
are proposed to model long dependencies between interactions.

In this study, we want to address that learning is a dynamic
process and there exist temporal cross-effects in KT. For one thing,
the mastery of a skill is not only influenced by previous interactions
of the same skill, but also the others (cross-effects). For another,
the temporal evolution for different cross-skill effects can also be
different. As shown in Figure 1, each previous interaction will take
different immediate effects on the target skill. Besides, although
such effects all decay with time, their decay rates differ from each
other, which we call temporal cross-effects in this paper. Some
skills may be too easy to forget, and the effects caused by different
previous interactions may also have different temporal evolutions.

There are a few recent studies beginning to partially address the
above temporal factors in KT [11, 14, 24, 30, 37]. These methods
mainly focus on discretizing time into slots or extracting hand-
crafted features. Some researches move one step forward to use a
global decay function to control the forgetting behavior [11, 14].
However, as shown above, learning is an adaptive and dynamic
process. Each previous interaction will take effect with different
temporal dynamics. The temporal cross-effects in KT may depend
on both previous interactions and the target skill, which cannot be
fully captured in a global way.

In this paper, we first validate the existence of temporal cross-
effects in KT through empirical studies. Based on the analyses
of mutual information between student interaction pairs in real-
world datasets, we find the temporal evolution is indeed distinct
for different cross-skill effects. Then, we introduce point process
to adaptively model temporal cross-effects in KT. A novel model,
HawkesKT, is proposed inspired by Hawkes process, which is a
variant of point process utilizing intensity function to model mu-
tual excitation between events localized in time. In KT scenario,
the basic event relies on the skill and response of each interaction.
Specifically, to predict one’s knowledge state of the target skill,
both the accumulative effects of historical interactions and their
evolutions over time are naturally characterized by the designed
intensity function. Besides, such cross-effects and temporal evo-
lutions are unique for different historical interactions and target
skills. Collaborative filtering is also utilized here to reduce the high
complexity of calculating all skill pairs’ parameters. Different from
deep learning based state-of-the-art methods, the parameters in our
model are highly interpretable, which can be used to automatically
discover latent relationships between skills. Actually, HawkesKT
reveals a brand new branch of approaches for KT, which is different
from various existing methods. The main contributions of this work
can be summarized as follows:

• We present temporal cross-effects in KT through empirical studies
on real-world datasets. The fine-grained temporal evolution of
different cross-skill effects should be taken into consideration.

• We propose a novel model HawkesKT to address temporal cross-
effects in KT based on point process. To the best of our knowledge,
we are the first to introduce Hawkes process into this field.

• Comparative experiments on three real-world datasets show the
effectiveness of HawkesKT. Our method also exhibits great inter-
pretability and has significant advantages in training efficiency.

2 RELATEDWORK
2.1 Knowledge Tracing
Classically, there are two lines of work about KT. Some studies
are based on the Hidden Markov Model. The most representative
method is BKT [6], which describes a student’s knowledge state
with a binary variable. The other line of work is based on factor
analysis. IRT [12] tends to assume and modify the potential traits
of subjects on the basis of observing test responses. AFM [3] and
PFA [27] are logistic regressionmodels that predict the performance
based on different previous information. Further, the recently pro-
posed KTM [34] leverages Factorization Machines to model pair-
wise interactions among features and is shown to encompass all
above factor analysis models.

As deep learning is making rapid progress in a range of domains,
RNN is utilized to capture complex dependencies between inter-
actions. DKT [29] uses the hidden state of RNN at each step to
represent student’s knowledge state and gets promising results
generally. Subsequently, many studies follow DKT to extend its
capacity [5, 17, 32], and some work tries to explore other model
structures (e.g. memory network, self-attention) to get higher ex-
pressiveness [2, 25, 39]. However, all the above methods neglect
the importance of temporal information. As a result, given an inter-
action sequence, they cannot exactly estimate a student’s changing
knowledge state at different times.

2.2 Temporal Dynamics in Knowledge Tracing
Typically, there exists a lot of temporal information in KT, and the
impact of temporal dynamics on predicting future response has
gradually emerged. Many studies focus on the forgetting behavior
in the learning process. Early explorations mainly incorporate a
lag time factor into BKT or PFA [28, 30]. DKT-t [20] and DKT-
Forgetting [24] introduce different time-based features into DKT.
DKT-Forgetting considers repeated and sequence time gap, as well
as the number of past trials, which is a state-of-the-art method with
temporal information. More recently, some work utilizes a decay
function to control the forgetting behavior [11, 14], which assumes
interactions happening recently have larger impacts.

However, these studies either rely on hand-crafted features or
model the continuously changing effects with a global decay rate.
Differently, our HawkesKT explicitly models temporal cross-effects
of each previous interaction, which can capture distinct temporal
trends of different cross-skill effects.

2.3 Hawkes Process
Point process is known to be good at modeling sequential events
localized in time [7]. There has been a lot of applications of point
process, including earthquakes prediction [21], user influence in so-
cial network [33, 40] and paper citation count [38]. Among variants
of point process, Hawkes process [13] explicitlymodels self-exciting



Table 1: Top-10 frequency skills in ASSISTments 12-13.

ID Skill Name
0 Equation Solving Two or Fewer Steps
1 Addition and Subtraction Integers
2 Addition and Subtraction Fractions
3 Conversion of Fraction Decimals Percents
4 Multiplication and Division Integers
5 Multiplication and Division Positive Decimals
6 Order of Operations All
7 Multiplication Fractions
8 Division Fractions
9 Equation Solving More Than Two Steps

and mutual-exciting characteristics of sequential events, and cor-
responding temporal trends are controlled by kernel function in
the intensity function. Recently, Hawkes process has been gaining
increasingly attraction and shows great effectiveness in various
domains, such as online activity prediction and personalized rec-
ommendation [8, 22, 35].

3 EMPIRICAL STUDY
In this section, we first formally define the knowledge tracing task
and introduce the symbols used in this paper. Then we validate
whether there exist temporal cross-effects in real-world educational
datasets.

3.1 Knowledge Tracing Task Setup
Definition 3.1 (Knowledge Tracing Task). Given a student’s inter-

action sequence 𝑆𝑡 = {x0, x1, · · · , x𝑛 }, knowledge tracing (KT) aims
at predicting whether he/she can answer the question correctly in
the next interaction x𝑛+1.

In this study, an interaction x𝑖 is defined as a tuple (𝑞𝑖 , 𝑡𝑖 , 𝑎𝑖 ),
including the question 𝑞𝑖 that the student attempts to answer at
timestamp 𝑡𝑖 , and corresponding response 𝑎𝑖 ∈ {0, 1} (correctness
of the answer, 1 means right). The sequence is sorted by time in an
ascending order, i.e. 𝑡𝑖 < 𝑡 𝑗 for any 𝑖 < 𝑗 . Besides, to identify the skill
involved in each question, we have a mapping 𝑠 (·) from questions
to skills, which can get the corresponding skill id 𝑠 (𝑞𝑖 ) of question
𝑞𝑖 . Here 𝑎𝑛+1 is the target to predict given 𝑆𝑡 and (𝑞𝑛+1, 𝑡𝑛+1).

3.2 Dataset Description
Here we use a real-world benchmark dataset, ASSISTments 12-13,
to conduct empirical studies. ASSISTments is an online tutoring
system that teaches and assesses students in mathematics, and this
series of datasets is often utilized in related research [10]. There are
totally 2.7M interactions in the dataset, involving 265 skills. More
detailed information can be found in Section 5.1.1.

To facilitate the understanding, we will mainly demonstrate the
analyses results about the top-10 skills with the highest frequency.
Table 1 shows the name of these skills in the dataset. Note that
these skill ids will be used throughout the paper.

Figure 2: CMI for all the skill pairs (cross-effects). The y-axis
is the skill id of the pre-interaction, and the x-axis is the skill
id of the post-interaction.

3.3 Temporal Cross-Effects
To validate whether there exist temporal cross-effects, we first
define the conditional mutual information (CMI) between student
interaction pairs, which will be used in the following analyses.

Definition 3.2 (Conditional Mutual Information). Given a restric-
tive condition 𝑐 , we can find all the interaction pairs (x𝑖 , x𝑗 ) that
cater to 𝑐 in each student’s interaction sequence. If we view the re-
sponse of pre- and post-interaction (𝑎𝑖 and 𝑎 𝑗 ) as a random variable
respectively, the conditional mutual information is defined as

𝐶𝑀𝐼 (𝑎𝑖 ;𝑎 𝑗 ) =
∑

𝑎𝑖 ∈{0,1}

∑
𝑎 𝑗 ∈{0,1}

𝑃 (𝑎𝑖 , 𝑎 𝑗 ) · log
𝑃 (𝑎𝑖 , 𝑎 𝑗 )

𝑃 (𝑎𝑖 )𝑃 (𝑎 𝑗 )
. (1)

Here the condition 𝑐 can be specific skills of the pre- and post-
interaction, or the time interval between the two interactions. And
the probabilities in the definition can be derived by counting fre-
quencies within all the satisfied interaction pairs. Actually, CMI
reflects the degree of dependency between pre- and post-interaction
under the restrictive condition.

First, we restrict the skill of pre- and post-interaction to validate
the cross-effects between skills. Note that if two skills are totally
independent, the corresponding CMI should be 0. Figure 2 shows
the CMI of all the combinations of skill pairs. The y-axis is the
skill id of the pre-interaction, and the x-axis is the skill id of the
post-interaction. We can see the effects are generally the largest
for interactions of the same skill (diagonal). However, there exist
obvious cross-effects between different skills, such as the condition
when the pre- and post-interaction is 9 and 4, respectively. And the
dependencies are high within the skill group {0, 1, 2} and {7, 8, 9},
which makes sense because these skills are generally perceived to
be related. As a result, when predicting the mastery degree of the
target skill, it is important to focus on not only previous interactions
with the same skill, but also other related ones.

Second, we move forward to investigate the temporal evolution
of different cross-effects. In addition to the restriction on the skill



Figure 3: The temporal evolution of CMI for the global trend
and some representative skill pairs (temporal cross-effects).

of pre- and post-interaction like before, we further group the in-
teraction pairs according to the log time interval between the two
interactions. Figure 3 shows the global trend and some represen-
tative skill pairs. The time interval after log transformation starts
from 2 and some grids are masked because there are not enough
interaction pairs (less than 50) under those conditions. Globally
speaking, the overall temporal evolution exhibits a decaying form
because of the forgetting behavior, which is consistent with previ-
ous studies [24]. However, it is noteworthy that for different skill
pairs, the decay rates differ from each other obviously, which we
call temporal cross-effects. For example, when the pre- and post-
interaction is 8 and 7 respectively, the CMI in the short term is large
because they are highly related, but it decays quickly with time.
On the other hand, the CMI between 8 and 2 is smaller and decays
slower, which is reasonable because skill 2 is relatively easier and
these two skills are not directly correlated. Note that there are also
many other skill pairs demonstrating significant differences w.r.t.
the temporal evolution, in which case a global decay function in
previous work is not sufficient.

Therefore, to capture such temporal cross-effects shown in the
above empirical studies, it is important to model fine-grained forget-
ting behavior in KT, where both the cross-skill effects and adaptive
decay rates should be taken into consideration.

4 METHODOLOGY
4.1 Preliminaries about Hawkes Process
Formally, a temporal point process is a random process of which
the realization consists of a list of discrete events localized in time,
{𝑡𝑛}𝑛∈N with the time 𝑡𝑛 ∈ R+. In the KT scenario, it represents
a series of timestamps when a student answers distinct questions
correctly/incorrectly, which constitute the basic events in temporal
point process. Given the history time of past events 𝑆𝑡 , temporal
point process introduces conditional intensity function 𝜆(𝑡 |𝑆𝑡 ), rep-
resenting a stochastic model for the time of the next event. For
simplicity, we omit the conditional sign as 𝜆(𝑡) in the following
parts. Then, the probability for the occurrence of a new event within
a small time window [𝑡, 𝑡 + 𝑑𝑡) can be expressed as [1, 35]:

𝜆(𝑡) 𝑑𝑡 = P{event in [𝑡, 𝑡 + 𝑑𝑡) | 𝑆𝑡 } . (2)
As for the concrete form of the intensity function 𝜆(𝑡), various

models differ from each other. As a popular and powerful vari-
ant, Hawkes process models the excitation between events, whose

intensity function takes the form of:

𝜆(𝑡) = 𝜆0 + 𝛼
∑
𝑡 𝑗<𝑡

𝜅 (𝑡 − 𝑡 𝑗 ) , (3)

where 𝜆0 is the base intensity and every history event has an addic-
tive effect 𝛼 . The effects vary with the time gap and the triggering
kernel 𝜅 (·) controls corresponding temporal characteristics.

4.2 HawkesKT Model
Inspired by the intensity function in Hawkes process, we design
𝜆(x𝑖 ) to represent how likely a student will answer the question
𝑞𝑖 correctly at 𝑡𝑖 given the history interactions 𝑆𝑡𝑖 . To model the
temporal cross-effects in KT, mutual excitation 𝛼x𝑗 ,x𝑖 is used to
capture cross-skill effects, and the fine-grained temporal evolution
is addressed in the designed kernel function 𝜅x𝑗 ,x𝑖 (·), leading to
the intensity function in the following form:

𝜆(x𝑖 ) =

base︷︸︸︷
𝜆
x𝑖
0 +

temporal cross−effects︷                              ︸︸                              ︷∑
x𝑗 ∈𝑆𝑡𝑖

𝛼x𝑗 ,x𝑖 · 𝜅x𝑗 ,x𝑖 (𝑡𝑖 − 𝑡 𝑗 ) . (4)

Here the total intensity is composed of the base intensity 𝜆
x𝑖
0 and

the temporal cross-effects part. Base intensity aims to capture the
difficulty of the target question itself, while temporal cross-effects
model the adaptive time-varying impacts of previous interactions.

4.2.1 Base Intensity. We notice that previous studies usually do
not take question index into consideration, probably due to data
sparsity and the large number of parameters it brings. In deep-
learning-based models, it is too expensive to give each question
a separate embedding. As a result, using skills to index questions
is an effective way to avoid overfitting and overparameterization.
However, in practice, distinct questions have different levels of diffi-
culties, even with the same skill. Lacking the modeling of questions
will lead to less expressiveness and flexibility.

Here we leverage base intensity to capture the difficulty degree
of both skills and questions, which is defined as follows:

𝜆
x𝑖
0 = 𝜆

𝑞𝑖
0 + 𝜆

𝑠 (𝑞𝑖 )
0 , (5)

where 𝜆𝑞𝑖0 and 𝜆
𝑠 (𝑞𝑖 )
0 are parameters for each question and skill,

respectively. When predicting the response of the target interaction
x𝑖 , every previous interaction will take effects on the basis of this
base intensity 𝜆

x𝑖
0 , which represent inherent characteristics of the

target interaction. In this way, only one parameter is introduced
for each question, which strikes the balance between modeling
individual question and avoiding overparameterization.

4.2.2 Temporal Cross-Effects. As shown in Section 3, previous
events have different impacts on the target interaction, and the
effects decay as time goes by. Moreover, the decay rates differ from
each other, which are related to both historical interactions and the
target skill. In this part, we focus to model such adaptive temporal
cross-effects in KT. There are mainly two components here: (1)
mutual excitation 𝛼x𝑗 ,x𝑖 that controls the degree of immediate
effects, and (2) kernel function 𝜅x𝑗 ,x𝑖 (𝑡𝑖 − 𝑡 𝑗 ) that controls fine-
grained temporal dynamics of cross-effects.

First, we use 𝛼x𝑗 ,x𝑖 to model to what extent the previous inter-
action x𝑗 will influence the response in the target interaction x𝑖 .



Here we view the skill-response pair (𝑠 (𝑞 𝑗 ), 𝑎 𝑗 ) as a basic event in
the history sequence, and the skill index 𝑠 (𝑞𝑖 ) is the target will be
influenced2. In this way, assuming there are |S| skills in total, the
mutual excitation 𝛼x𝑗 ,x𝑖 can be resolved as a parameter matrix with
shape 2|S| × |S|. The first dimension represents the status of the
history interaction, and the second dimension stands for the target
skill to predict. It is noteworthy that the mutual excitation 𝛼x𝑗 ,x𝑖
inherently encompasses the relationship between each skill pair.

Second, to model the forgetting behavior, we chose to use the
exponential function as the kernel function:

𝜅x𝑗 ,x𝑖 (𝑡𝑖 − 𝑡 𝑗 ) = exp
(
−(1 + 𝛽x𝑗 ,x𝑖 ) log(𝑡𝑖 − 𝑡 𝑗 )

)
, (6)

where 𝛽x𝑗 ,x𝑖 is another core parameter controlling fine-grained
decay rates under different circumstances. Specifically, given the
target skill, the effects of historical events with different skills and
responses will have adaptive decay rates. As for the form of the
kernel function, the exponential function is a natural choice for
approximating the forgetting curve. It is also commonly used in
many applications of Hawkes process and is proved efficient most
of the time [9, 23, 38]. Besides, we find applying log transformation
to the time interval 𝑡𝑖 − 𝑡 𝑗 is important because the time interval
often demonstrates a long-tail distribution. And the exponential
function actually turns to a power function 1/(𝑡𝑖 − 𝑡 𝑗 )1+𝛽x𝑗 ,x𝑖 under
this setting. One can also design other function forms to fit different
real-world application scenarios.

Subsequently, with the intensity value 𝜆(x𝑖 ), the probability of
answering the question correctly in interaction x𝑖 is predicted by
applying the sigmoid function to the intensity value:

𝑦𝑖 B 𝑃 (𝑎𝑖 = 1) = 1
1 + exp(−𝜆(x𝑖 ))

. (7)

4.3 Reparameterization Method
Next, we focus on how to deal with the parameters in our model.
Besides base intensity, the core parameters are 𝛼x𝑗 ,x𝑖 and 𝛽x𝑗 ,x𝑖 .
Generally, they are modeled as a matrix in Hawkes process respec-
tively, where each entry represents the parameter for a specific
combination of history and target event:

A ∈ R2 |S |×|S |,B ∈ R2 |S |×|S | , (8)
The first dimension stands for the skill-response pair (𝑠 (𝑞 𝑗 ), 𝑎 𝑗 )
and the second dimension indexes the target skill 𝑠 (𝑞𝑖 ) to predict.

Although directly optimizing the parameter matrix is an intu-
itive solution, there are two major problems. First, the event pairs
existing in the dataset are usually sparse compared to the total
2|S|2 kinds of combinations. As a result, only a few parameters
will get updated, and the number of parameters will be huge if |S|
is large. Second, the parameters for different pairs are independent,
and hence the patterns of temporal cross-effects learned from data
cannot propagate as well as generalize to unseen cases. Therefore,
we introduce matrix factorization as a reparameterization method
to take advantage of collaborative filtering [19] and reduce the to-
tal number of parameters, which is often utilized in recommender
systems [4, 36].

2We do not make it question-specific because this will be too fine-grained to learn
meaningful mutual parameters, and skill is comparably a more suitable level.

Collaborative filtering assumes similar history events have simi-
lar effects on the target interaction. We can encode skill-response
pair and the target skill into the same vector space, and use inner
product to derive the parameters for each combination. In this way,
we will have two factor matrices for each set of core parameters:

P𝐴 ∈ R2 |S |×𝐷 ,Q𝐴 ∈ R |S |×𝐷 ,

P𝐵 ∈ R2 |S |×𝐷 ,Q𝐵 ∈ R |S |×𝐷 .

Here𝐷 denotes the dimension of the hidden space. Then the specific
𝛼x𝑗 ,x𝑖 and 𝛽x𝑗 ,x𝑖 can be calculated as:

𝛼x𝑗 ,x𝑖 =
𝐷∑
𝑑=1

𝑝
𝑠 (𝑞 𝑗 )+𝑎 𝑗 |S |
𝐴

· 𝑞𝑠 (𝑞𝑖 )
𝐴

, (9)

𝛽x𝑗 ,x𝑖 =
𝐷∑
𝑑=1

𝑝
𝑠 (𝑞 𝑗 )+𝑎 𝑗 |S |
𝐵

· 𝑞𝑠 (𝑞𝑖 )
𝐵

. (10)

In this way, the number of parameters will be reduced from
𝑂 (4|S|2) to 𝑂 (6|S|𝐷) considering 𝐷 ≪ |S|. Besides, benefiting
from collaborative filtering, the learned patterns of temporal cross-
effects are encoded in embeddings of each dimension. This will
be extremely helpful to model the temporal cross-effects of rare
interaction pairs and understand latent relationships between skills.

4.4 Parameter Learning
In summary, the parameters in HawkesKT are base intensity 𝜆

𝑞𝑖
0 ,

𝜆
𝑠 (𝑞𝑖 )
0 , and factor matrices {P𝐴,Q𝐴, P𝐵,Q𝐵}. To jointly learn these

parameters, we optimize a standard cross-entropy loss between the
predicted probability 𝑦𝑛+1 and the true response 𝑎𝑛+1:

L = −
∑
𝑛

(𝑎𝑛+1 log𝑦𝑛+1 + (1 − 𝑎𝑛+1) log(1 − 𝑦𝑛+1)) (11)

Due to the success of Adam algorithm [18], we use Adam as the
learning algorithm. We also add weight decay on factor matrices.

4.5 Prerequisite Score
Besides predicting future performance, HawkesKT is also able to au-
tomatically discover latent skill relationships based on meaningful
parameters. Note that the parameter 𝛼x𝑗 ,x𝑖 inherently encompasses
the mutual effects between skills. We denote 𝛼 {𝑠1,1},𝑠2 as the effect
on the target skill 𝑠2 caused by answering the question correctly
with skill 𝑠1. Similarly, 𝛼 {𝑠1,0},𝑠2 means the situation when 𝑠1 is in-
correct. Intuitively, if 𝑠1 is a prerequisite of 𝑠2: (1) a low knowledge
level of 𝑠1 will have negative impacts on 𝑠2; (2) a high mastery of
𝑠2 may indicate having known 𝑠1 well. Correspondingly, 𝛼 {𝑠1,0},𝑠2
is expected to be small and 𝛼 {𝑠2,1},𝑠1 should be large. Therefore,
for each skill 𝑠𝑖 , we define its prerequisite score 𝑟 (𝑠𝑖 ) ∈ R |S | to
represent how likely other skills be a prerequisite of 𝑠𝑖 :

𝑟 (𝑠𝑖 ) = softmax
(
𝛼 {𝑠𝑖 ,1},𝑠

) /
softmax

(
𝛼 {𝑠,0},𝑠𝑖

)
, (12)

where the softmax aims to normalize the effects among all skills 𝑠 .
Then given any skill 𝑠𝑖 , we can get its most probable prerequisites
according to prerequisite score 𝑟 (𝑠𝑖 ).

In current education literature, relations among skills are usually
manually annotated, which requires a lot of resources and time.
The proposed method can serve as a reference and completion to



Table 2: Statistics of the datasets after preprocessing.

Dataset #student #question #skill #interaction
ASSISTments 09-10 3.7k 16.9k 111 110.2k
ASSISTments 12-13 25.3k 50.9k 245 879.5k
slepemapy.cz 81.7k 2.9k 1473 2877.5k

education experts, which is important in both online education
scenario and traditional classroom teaching. The results of skill
relations discovery will be presented in Section 5.5.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We use three real-world datasets to validate the
effectiveness of our model.

• ASSISTments 09-10. [10] ASSISTments is an online tutor-
ing system that teaches and assesses students inmathematics.
This dataset is publicly available3.

• ASSISTments 12-13. This dataset comes from the same
system as before with different time spans4.

• slepemapy.cz. [26] This dataset is from an online system
used for practicing geography and is publicly available5. We
utilize place_asked as the skill identifier. Each skill will have
two questions according to the type: (1) find the given place
on the map; (2) pick the name for the highlighted place.

For each dataset, we discard invalid users with less than 5 in-
teractions and only consider the first 50 interactions for each user
because it is more essential to predict performances when there
are few user histories. Besides, the timestamp of each interaction
is missing in ASSISTments 09-10, hence we assume users answer
questions consecutively with a fixed time gap (1 second). After
preprocessing, statistics of the three datasets are shown in Table 2.

5.1.2 Evaluation Protocols. We perform 5-fold cross validation
to evaluate all the models, in which folds are split based on users.
A validation set is built by extracting 10% of the users from the
training set, which is used to tune hyperparameters and perform
early stopping. For each sequence, every position except for the
first one will be used for training and evaluation. We use area under
the curve (AUC) as the evaluation metric. The above settings are
also adopted in many previous studies [24, 29].

5.1.3 Baseline Methods. We compare our HawkesKT model to
six baseline methods in different aspects. The first three baselines
do not incorporate temporal information:

• IRT [16]. This is a traditional method based on Item Re-
sponse Theory, which models characteristics of items and
users with two sets of parameters.

• DKT [29]. DKT represents a student’s knowledge by the
hidden states of RNN. Each skill is encoded to a one-hot
vector or a low-dimensional embedding.

3https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-
data/skill-builder-data-2009-2010
4https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
5https://www.fi.muni.cz/adaptivelearning/?a=data

Table 3: AUC of all methods on the three datasets (higher
is better). We conduct 5-fold cross validation and report the
average score. The best results are in bold face and the best
baseline is underlined. * and ** means our method signifi-
cantly outperforms the corresponding baselinewith 𝑝 < 0.05
and 𝑝 < 0.01, respectively.

Method ASSISTments ASSISTments
slepemapy.cz

09-10 12-13

IRT 0.5869∗∗ 0.6340∗∗ 0.5654∗∗
DKT 0.7515∗∗ 0.7308∗∗ 0.7423∗∗
SAKT 0.6860∗∗ 0.6906∗∗ 0.6599∗∗

DKT-Forgetting 0.7540∗ 0.7462∗∗ 0.7498
KTM 0.7425∗∗ 0.7535∗∗ 0.7407∗∗
AKT-R 0.7474∗∗ 0.7555∗∗ 0.7454∗∗

HawkesKT 0.7629 0.7676 0.7500

• SAKT [25]. This is a recently proposed deep-learningmethod
based on self-attention mechanism.

The rest three baselines consider time-varying effects:
• DKT-Forgetting [24]. This is a DKT-based model that con-
siders past trials and time gaps as extra features.

• KTM [34]. This method utilizes Factorization Machines to
model interactions between features. Here the features we
use include question id, skill id, historical responses on dif-
ferent skills, and temporal features in DKT-Forgetting.

• AKT-R [11]. This is a attention-based neural network model
and attention weights are computed by a distance-aware
exponential decay with a global decay rate, which is a state-
of-the-art method with temporal information.

We do not include methods based on BKT because they have already
been encompassed in the above methods.

5.1.4 Parameter Settings. We implement HawkesKT and other
baselines (except for IRT) in PyTorch and the code is publicly avail-
able6. For a fair comparison, the embedding size and hidden size
is fixed to 64 for different models on all the datasets. Early stop is
applied if AUC on the validation set does not increase for 5 epochs.
The learning rate is tuned between {5𝑒−3, 1𝑒−3, 5𝑒−4, 1𝑒−4} and the
l2-coefficient is tuned between {1𝑒−3, 1𝑒−4, 1𝑒−5, 1𝑒−6, 0}. All the
model parameters are normally initialized with 0 mean and 0.01
standard deviation.

5.2 Overall Performance
Table 3 shows the performance of all baseline methods and our
HawkesKT model. We have the following observations:

First, different kinds of baselines demonstrate noticeable perfor-
mance gaps. As a RNN-based model, DKT is superior to the tradi-
tional IRT. We also find DKT outperforms SAKT on all datasets,
which is consistent with previous work [11]. DKT-Forgetting gain
further improvements, showing the importance of considering tem-
poral factors. KTM is flexible to incorporate question-level and

6https://github.com/THUwangcy/HawkesKT
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Figure 4: Performance comparison between HawkesKT and its variants: without temporal information (\Temporal), without
adaptive decay rates (\Cross), and without matrix factorization (\CF).

temporal features, and hence perform better than DKT-based mod-
els sometimes. AKT-R yields remarkable results most of the time
because it not only model temporal decay but also include question-
level information by Rasch model-based embeddings. But we find
KTM and AKT-R are prone to overfit during training because of
the high model capacity.

Second, HawkesKT performs consistently better than all the
baselines. Compared with DKT-Forgetting, HawkesKT naturally
takes continuous time-varying effects into consideration and does
not only rely on interactions with the same skill or adjacent one.
KTM is able to extend to incorporate temporal features, but it need
hand-crafted features and cannot capture the adaptive temporal
cross-effects of each previous interaction. As for AKT-R, although
it incorporate exponential decay to model the forgetting behavior,
the decay rate is still global. Therefore, it cannot capture temporal
cross-effects revealed in this work, and hence results in suboptimal
performances. On the contrary, our HawkesKT model addresses
temporal cross-effects with mutual excitation and adaptive kernel
function, leading to the best results all the time.

Third, our HawkesKT model is capable of scaling to different
scenarios. The three datasets involve different subjects, and the sizes
of data range from small to large. The consistent improvements
demonstrate the scalability of HawkesKT. Note that our model
gains more improvements on mathematical datasets. While on
the geography dataset (slepemapy.cz), the improvement is not that
large (the difference compared to DKT-Forgetting is not significant).
It is reasonable because the temporal cross-effects between skills
are indeed more helpful in mathematics. As for geography, only
the surrounding countries can help identify the target country in
general. The relationships between skills are simple and the major
temporal dynamic is self-forgetting, which accounts for why DKT-
forgetting and AKT-R perform well.

5.3 Efficiency Analyses
As a new branch of method, we also investigate the efficiency
issue of HawkesKT. Table 4 shows the training time per epoch
and the total number of parameters for different methods on two
representative datasets. We ensure all the methods are evaluated
under the same experimental setting (batch size, embedding size,

Table 4: Comparison of the training time and number of pa-
rameters under the same experimental setting.

Method ASSISTments 09-10 slepemapy.cz

time/epoch # params time/epoch # params
DKT 0.8s 57.4k 20.4s 314.9k
DKT-Forgetting 1.1s 59.1k 47.6s 320.5k
KTM 7.5s 1760.7k 317.8s 475.4k
AKT-R 2.3s 160.7k 45.8s 649.2k
HawkesKT 0.5s 74.8k 15.2s 564.6k

maximum sequence length). All the experiments are conducted
with a single 1080Ti GPU.

We can observe that the training time of HawkesKT is much
less than other state-of-the-art methods, even faster than DKT.
KTM is especially slow and needs abundant parameters if there
are a lot of questions in the dataset. ART-R is also not efficient
because of its complex model structure. Remarkably, our HawkesKT
not only has fewer parameters compared to recent work, but also
reduces the training cost by a large margin while achieving the
best performance. In real educational scenarios, timeliness is also
an important factor. The significant advantage of HawkesKT in
both effectiveness and efficency will make it more applicable in
real-world large-scale educational settings.

5.4 Ablation Study
To verify the impacts of modeling temporal cross-effects, we com-
pare HawkesKT with three variants:

• \Temporal: This model removes the kernel function, and
thus does not consider forgetting behavior, leading to an
intensity function as follows: 𝜆(x𝑖 ) = 𝜆

x𝑖
0 +∑

x𝑗 ∈𝑆𝑡𝑖 𝛼x𝑗 ,x𝑖 .
• \Cross: This model uses a global parameter 𝛽 to control the
exponential decay: 𝜆(x𝑖 ) = 𝜆

x𝑖
0 +∑x𝑗 ∈𝑆𝑡𝑖 𝛼x𝑗 ,x𝑖 𝑒

−𝛽 log(𝑡𝑖−𝑡 𝑗 ) .
• \CF: This model does not use matrix factorization as a repa-
rameterization method, and directly optimizes parameter
A,B with shape 2|S| × |S|.



Figure 5: Visualization of the discovered relations between
skills according to the learned parameters (𝛼x𝑗 ,x𝑖 ). Circles
represent skills and arrows are relations. Stronger relations
will be showed in thicker arrows, and circles with color are
some representative skills worthy of notice.

Figure 4 shows the AUC of HawkesKT and its variants on all the
datasets, as well as DKT-Forgetting and AKT-R for comparison. We
have the following main observations:

First, temporal information is of significant importance in KT.
\Temporal results in the largest performance loss and is generally
worse than DKT-Forgetting and AKT-R, which shows the necessity
to model forgetting behavior.

Second, it is important to model fine-grained temporal evolution
with different decay rates to capture temporal cross-effects in KT.
Although the performance loss of \Cross is not the largest, it is
noteworthy that \Cross leads to consistently worse results on all
the datasets. Without temporal cross-effects, \Cross yields similar
results with AKT-R on ASSISTments 12-13. This shows the global
decay rate is not sufficient, and the adaptive temporal cross-effects
addressed in our model are indeed helpful.

Third, reparameterization with matrix factorization brings sta-
ble performance gain. Matrix factorization helps to take advantage
of collaborative filtering, which enables the learned patterns to
propagate through embeddings and generalize under different cir-
cumstances. Without matrix factorization, performances of \CF on
all the datasets suffer amoderate loss, which shows the effectiveness
of combining point process and collaborative filtering.

5.5 Skill Relationships Discovery
Here we want to validate the performance of relation discovery
based on the proposed prerequisite score in Section 4.5.

Firstly, we utilize the parameters trained on ASSISTments 12-13
with top-10 frequency skills as a case study. We visualize the re-
lations among some representative skills in Figure 5. The circles
represent skills and arrows stand for prerequisite relations between
skills. The calculated prerequisite score is also annotated beside the
arrow (the thicker of the arrow, the stronger of the relation). Circles
with color are representative skills we focus on, whose main pre-
requisites, as well as relations among them are drawn. The figure

shows that our model indeed finds some meaningful relations. For
example, Order of Operations All (6 in red) relies on skills about
addition/subtraction (2) and multiplication/division (7, 8). The pre-
requisite scores for multiplication/division skills are higher because
they are more essential when determining the order of operations.
Besides, Multiplication Fractions (7) is a strong prerequisite of Divi-
sion Fractions (8 in blue), and Addition and Subtraction Fractions (2)
also has some impacts.

Secondly, we conduct an annotation experiment to quantitatively
validate the discovered relationships. We choose top-20 frequency
skills in ASSISTments 12-13 and ask three experts to annotate the
binary helpfulness between each skill pair. The kappa coefficient of
annotations is 0.52, showing the applicability. Averaged annotation
results are used as the ground truth of relevance. Then a ranked
list for each skill is generated based on the proposed prerequisite
score. This ranked list is evaluated according to the annotated rele-
vance, whose averaged NDCG is 0.8267. This shows our model can
indeed automatically find relationships between skills consistent
with human perceptions.

The above analyses validate our parametric assumptions, and
demonstrate that the parameters in HawkesKT are highly inter-
pretable. The revealed relation graph can serve as an effective com-
pletion for education experts. This method can also scale to find
relations among a large amount of skills, which is helpful in both
online and traditional education scenarios.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose to explicitly model temporal cross-effects
in KT, which means the adaptive time-varying effects between dif-
ferent interactions. Through empirical studies, we validate that
different cross-skill effects have varying temporal dynamics. Based
on the temporal cross-effects shown in data, a novel point process
based model HawkesKT is proposed, which reveals a new branch
of method for KT. In HawkesKT, each history interaction will have
its own continuously changing effect on the target skill, controlled
by the corresponding kernel function. The proposed HawkesKT
achieves superior performance compared to state-of-the-art meth-
ods on three real-world datasets in different scenarios. It is also
remarkable that our model shows significant advantages in training
efficiency and parameter interpretability. We further propose pre-
requisite score to automatically discover latent skill relationships
based on parameters in our model, which can serve as a reference
and completion to experts in education.

In the future, we plan to enable HawkesKT with extensible side
information, as the current model is not flexible enough to take
other features into consideration, such as school, the type of ques-
tion, and so on. We also consider incorporating known dependen-
cies among skills to improve the prediction performance.
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